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I. INTRODUCTION

Neural network models for the sensorimotor control
functions of the brain have been studied by Stephen
Grossberg (1987), Teuvo Kohonen (1988), and many

others (Ritter et al, 1992; Guenther et al 2001). A new
approach, presented in this paper, is a proposed connectivi-
ty of a sensorimotor control system by reverse engineering
the biological modalities of mechanoreceptors1. The reverse
engineered robotic system is designed to respond to the
modality of “itch-type” activations. The motor response of the
system is designed to generate a “scratch-type” trajectory for
all possible end joints and all possible activation itch points.
The significance of this new approach is that it utilizes an
experimentally observed neurological topographic mapping,
sometimes referred to as an homunculus (Kandel, Schwartz,
Jessell, 2000; Gazzaniga, Ivry, Mangun, 2002; Bear,
Connors, Paradiso, 2001; ) to design coordinate frames with-
in the controller.  Such a coordinate frame may lead to the
robotic design of:

a. Biological-type perception by means of “tactile sensory-
montoring” of the external world. 

b. A form of mechanical “self awareness” by locating and
identifying all parts of the robotic body. 

c. A form of mechanical “self-knowledge”  by program-
ming/teaching the robot the location of all bodily parts and
the coordinate location of the space in the vicinity of the
body parts that is associated with all possible itch-scratch
trajectories. 

d. “Tactile-sensorimotor control” of all end-joints by
executing itch-scratch trajectories for all possible itch-
points.

e. A Neuronal Correlate of a Modality (NCM)-circuit that
reverse engineers the biological receptor modality, often
defined in terms of the “subjective experience” or sensa-
tion evoked by the receptor (e.g. itch-type feeling).
(Guyton,1991; Kandel, Schwartz, Jessell, 2000). 

In the design of a NCM-circuit, it is particularly signifi-
cant that the modality of biological receptors is described
in all medical and neuroscience textbooks (Guyton,1991;
Kandel, Schwartz, Jessell, 2000; Gazzaniga, Ivry,
Mangun, 2002; Bear, Connors, Paradiso, 2001) in terms
of the subjective experience evoked by the receptor.
Modalities of receptors, studied in the field of psy-
chophysics since 18402, couple subjective experiences
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List of symbols used in mathematical formulas:
p = The control signal output of a neural network. 

q = The input signal to a neural network. 

Px, Py, Pz: The control signal output of a neural network directed to each of the three motors associated with a 3-degree of freedom joint. 

P3d = The vector sum of Px, Py, and Pz (for 3-degrees of freedom).     

Fri = The output of each of the r-neurons in a neural network (Ritter et al, 1991).

Wrl = The synoptic weight between neuron-r and neuron-l. 

Grr’ = The coupling strength between the neuron-r and all the internal r’-neurons. 

ør = The threshold of neuron-r. 

Vi = The input to plane A’, and the output of plane A.
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with neuronal activity, and thereby lead to the possibility of
designing a “thinking” Turing machine (Rosen and Rosen,
2007a,b: Turing. 1950)3. 

In this paper, mechanoreceptors and nociceptors are
reverse engineered by means of pressure transducers dis-
tributed on the robotic body. The pressure transducers and
their connectivity is assumed to adhere to the connectivity of
the biological receptors. The modality of the biological recep-
tors and their connectivity to the brain is assumed to adhere
to the biological “labeled line” principle (Guyton, 1991), or the
“Law of Specific Nerve Energy” (Haines, 2002), which
ensures that each type of sensor responds specifically to the
appropriate form of stimulus that gives rise to a specific sen-
sation. In the biological system the specificity of each modal-
ity is maintained in the central connections of sensory axons.
Thus the term stimulus modality encompasses the receptor,
afferent axons, and the central pathways that are activated
by the stimulus. It is noted that the central connections asso-
ciated with sensory modalities often form neurological topo-
graphic mapping in various regions of the brain (Kandel,
Schwartz and Jessel, 2000; Purves et al, 1997). In this
paper, it is proposed that those topographic mappings may
form a coordinate frame in the brain that is utilized to design
a functional biological sensorimotor control system. The
building path presented in this paper, for the itch modality, is
expandable to the modalities of the visual sensors (Rosen
and Rosen, 2007c,d) the vestibular sensors, and ultimately
to a multi-tasking sensorimotor control system (Rosen and
Rosen, 2006b).

II. METHOD

Topographic mappings and patterns of organization within
the brain are suggestive of the formation of coordinate
frames. Purves et al (1997) writes that “Patterns of organiza-
tion within the sensory cortices may be a fundamental fea-
ture of the cerebral cortex, essential for perception, cogni-
tion, and perhaps even consciousness.” In this paper the pat-
tern of organization associated with the homunculus is used
to form a portion of a coordinate frame within the controller.
The coordinate frame within the controller is utilized to gen-
erate a form of robotic “perception”, robotic “self knowledge,”
robotic sensorimotor control, and a robotic form of mechani-
cal modalities. The method for utilizing patterns of organiza-
tion of neurons to design a sensorimotor control system is
described in this section-II.

1. THE REVERSE ENGINEERED 
BODYAND BRAIN

This paper presents a model of selected elements of the
human body and brain. The reverse engineered model con-
sists of a) a mechanical robotic body, b) a neural network
based robotic controller, c) an array of pressure transducers
uniformly distributed along the peripheral surface of the
robotic body (simulating biological mechanoreceptors), and
d) thin electrical, low voltage wires (simulating the afferent
and efferent somatic pathways) between the pressure trans-
ducers and the controller and between the controller and the
motors. The total system is illustrated in Figure 1 and
described in Rosen & Rosen (2006b).

1.1 The Selected Building Path
Caveat-A specified building path with simplified components:
The task of reverse engineering a biological adaptation is
often much simpler than design-engineering the adaptation
itself. The specifications for the reverse engineered model
may be selected to merely specify a building path for the bio-
logical functions. The human body and brain is viewed, in
this paper, as a biological adaptation. Thus, the description
of the robotic body and controller adheres to Daniel
Dennett’s reverse engineering requirement: “No functional
analysis is complete until it has confirmed that a building
path has been specified” (Dennett, 1997).
The objective of this paper is to specify a building path for the
robotic controller and for the robotic body controlled by the
controller. Therefore we have selected the simplest possible
complete system consisting of a controller controlled by sim-
plified, very basic neural network equations (Ritter, Thomas,
& Schulten, 1992; Kohonen, 2001), and a simplistic robotic
body controlled by motors with one torque generating motor
per degree of freedom. The mechanical building path for the
reverse engineered body and brain is illustrated in Figure 1.
Numerous different, and always more modern, approaches
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Figure 1. A reverse engineered building path for the major muscles
and sensors that are used to control locomotive functions. The
mechanoreceptors and nociceptors, the proprioceptors, and the
vestibular sensors, are reverse engineered by pressure transducers
uniformly distributed on the robotic (skin) surface, the angle measur-
ing transducers associated with each motor, and the circular rings on
the controller (head) section of the robot, respectively. The nervous
system is reverse engineered by thin wires that connect all the sen-
sors, via cable wire bundles, to the controller (see insert). The
modalities of the camera/eyes (not discussed in this paper), have
been studied by Rosen and Rosen (2003c), and the study report is
available for viewing at www.mcon.org.
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to the design of the robotic body are rampant in the science
and engineering literature. For example: “An overview of cur-
rent research in the field of biped locomotion” by Westervelt
& de-Wit (2007) and “Interlimb coordination: Neural,
Dynamical, and Cognitive Constraints” (Swinnen, et al,
1994).

1.1.1 The parts of the robotic body applicable to the
design of the controller
The following aspects of the robotic body and controller,
shown in figure 1, are applicable to the design of the con-
troller: 

a) The robotic body: There are 21-joints in the robotic
body. There are 3-motors and 3-angle measuring transduc-
ers associated with each joint (39-motors associated with the
21-joint body shown in Figure 1).

b) Angle measuring transducers: The biological proprio-
ceptors are reverse engineered by the angle measuring
transducers, located on the shaft of each motor. For each
joint of the robotic body, the angle measuring transducers
may be used to determine the angular location of the shaft-
end emanating from that joint.   

b) The Controller: The controller is a hybrid circuit made
up of electronic neural networks and microprocessors that
execute sequential algorithmic programs. The controller is a
giant parallel processing unit that simultaneously controls all
the joints present in the mechanical body. The controller
described in this paper is a copy of the Relational Robotic
Controller (RRC) designed by MCon Inc. (see the acknowl-
edgement section).

c) The Reverse Engineered Somatic Sensors and the
“Robotic self” of the System: The nociceptors and
mechanoreceptors of the human body are reverse engi-
neered by pressure transducers that are uniformly distrib-
uted on the surface of the robotic body. 

d) Definition of robotic “self”: The robotic “self” of the sys-
tem is defined to be the internal space and internal structure
bounded by the pressure transducers uniformly distributed
about the robotic body. The region external to the “robotic
self” is defined to be the environment in which the robot oper-
ates.

e) The wiring of the reverse engineered nervous system
adheres to The Law of Specific Nerve Energy: The wiring
between the pressure transducers and the controller, and the
controller to the motors, consists of thin electrical, low volt-
age-wires that reverse engineer the human nervous system.
The connectivity of the system is assumed to adhere to the
biological “labeled line” principle (Guyton, 1991), or the “Law
of Specific Nerve Energy” (Haines, 2002). 

1.2 The Constraints Imposed on the Operation of
an itch-scratch Robot Controlled by the
Modalities of Mechanoreceptors
The following operational constraint may be imposed on a
robotic system that is controlled by the itch-type activations
of pressure transducers and designed to perform a scratch-
type trajectory to alleviate the itch-activation: a) The system
must perform tactile sensory monitoring of all the pressure
transducers (mechanoreceptors) uniformly distributed on the
robotic body. In this paper “robotic self monitoring” may be
analogous to biological perception of itch-type activations b)
The controller must locate and identify all body parts. For
example, all possible itch-points and all possible end-joints

used for scratching must be located and identified by the
controller. In this paper, “robotic-self” location and identifica-
tion may be analogous to biological “self-awareness” of itch-
type activations.  c) The robot must be programmed/taught to
perform all possible itch-scratch trajectories. In this paper, a
robot that learns all possible itch-scratch trajectories is said
to exhibit a form of “robotic self knowledge” analogous to the
biological knowledge of the itch-scratch operations. 

1.3 Four engineering constraints derived from the
biological itch-scratch response
Engineering constraints are derived by reverse engineering
the observed itch-scratch behavior pattern of biological
organisms. They have been selected to yield quantitative
design parameters for the sensory motor control of animal-
like itch-scratch behavior patterns, without regard to their
neurobiological basis. The human-itch scratch adaptive
behavior pattern is an assumed constraint that is not dis-
cussed in the method section. The neurobiological basis for
the engineering constraints are discussed in the discussion
section IV-1.

1.3.1 Evaluating and testing the engineering 
constraints derived from the assumed 
biological analogues: 
Quantitative engineering constraints may be viewed as
assumptions that are derived from the qualitative biological
analogues listed above, and the modalities of receptors as
they apply to biological itch-type activations and the biologi-
cal scratch-type response. The connectivity of the receptors
is assumed to adhere to the biological labeled line principle
or law of specific nerve energy, as stated in most neuro-
science text books  (Guyton; Kandel; Bear; Gazzaniga). In
order to accommodate obstacle avoidance, the itch trajecto-
ry of motion is assumed to be pre-planned and goal directed
with the option of re-planning if an obstacle appears along
the pre-planned trajectory. Note that the assumed quantita-
tive engineering constraints need not be substantiated by
any experimental neurobiological data at this point of the dis-
cussion. It is proposed that these characteristics may be
evaluated in the discussion section (after the model has
been fully described), and tested to determine whether the
mechanical characteristics of the reverse engineered model
are representative of the biological analogues that have
been ascribed to the human biological system. 
The following engineering constraints, expressed in the form
of four engineering problems, have been selected to be rep-
resentative of the biological system’s response to itch-
scratch type activations. 

1.3.2 Constraint Associated With Tactile Monitoring
for Itch-scratch-type Activations:
A coordinate frame within the controller
The activated tactile sensors that are uniformly distributed on
the skin surface also activate the central connections in the
brain. In this paper, the central connections are reverse engi-
neered by a neural network located within the controller. This
neural circuit must monitor, locate, and identify each itch-
type activation and all the biological parts used to scratch
each itch-point. The first step for achieving this goal is to
design a coordinate frame within the controller. 
Problem 1. How to build a neural network within the con-
troller that includes a coordinate frame defined by the pres-
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sure transducers distributed on the surface of the robotic
body: The selected approach is to transform the layers of the
mechanoreceptors distributed on the robotic body into a
“homunculus” within the controller (similar to the transformed
homunculus discovered in the somatosensory and motor
cortexes (Penfield and Rasmussen, 1950)). The coordinate
frame within the controller, associated with the region around
the homunculus, is defined by electronic receiving neurons
that sometimes receive signals from mechanoreceptors that
are located on the flailing limbs of the robot. 

1.3.3 Constraints Associated With the Location and
Identification of all Body Parts: “Robotic self-identifi-
cation and location”
Problem 2. How to program the robotic controller to control
the trajectory of motion (scratch trajectory) of robotic limbs:
The limb must move towards any identified itch-goal-point
defined by an activated pressure transducer. The selected
approach is to assume that a) off-body receiving neurons
define the space surrounding the homunculus, b) that robot-
ic limbs move through that space, and c) that a mechanical
form of “self knowledge” is gained if the robot has the capa-
bility to move a robotic limb towards any and every other part
of the robotic body. The robot is programmed to locate each
of its surface parts (itch points) with respect to and related to
the location and motion of other parts (the scratching motion
of the scratch trajectory). The robot has the capability to per-
form an “itch-scratch” response, by moving a limb through a
goal directed trajectory aimed at an “itch”-point on the robot-
ic body. 
Problem 3. How to design the RRC so that the trajectory of
motion is pre-planned and goal directed with the option of re-
planning (obstacle-avoiding) the pre-planned trajectory: This
requirement, obstacle avoidance along the trajectory,
assures that the designed itch-scratch trajectory of motion
adheres to the biological characteristics of volitional motor
control4. The constraint is satisfied by dividing the trajectory
of motion into small transitions to adjacent “nodes”. During
each frame period, the total goal directed trajectory is pre-
planned by the RRC as a sequence of small (nodal) transi-
tions. However, only the first small nodal transition is activat-
ed by the controller. Thus the trajectory may be re-planned
during all subsequent frame periods.
Problem 4. How to train/program the RRC so that location
and itch-scratch type actions executed in the internal coordi-
nate frame correspond to movements in the “real” environ-
ment: This training or programming requires that the robot
learn by means of repeated multiple itch-scratch activations
the location of each of its surface parts with respect to and
related to the other surface parts. This requirement may be
satisfied by state of the art techniques for training/program-
ming the neural networks system.
The following section presents a technical solution to each of
the four problems. Other related aspects of the system are
presented in referenced publications (Rosen and Rosen
2003a,b; 2006a,b; 2007a,b,c,d). 

2. THE RELATIONAL ROBOTIC CONTROLLER
(RRC): THE REVERSE ENGINEERED BRAIN

The following section is divided into 5-parts. Each of the first
4-parts describe the solution to one of the 4-problems enu-

merated above. In each of the first 4-parts the design-solu-
tion is based on reverse engineering the connectivity of the
assumed biological analogues (e.g. modality) of itch-scratch
behavior patterns5, 6. The fifth part is a summary description
and solution to the neural network equations of the RRC cir-
cuits. 

2.1 Problem 1. How to build a neural network
within the controller that includes a coordinate
frame defined by the mechanoreceptors distrib-
uted on the surface of the robotic body
The coordinate frame within the controller may be represent-
ed by a topographic ordering of neural network neurons that
are transformed into an homunculus as described by Kandel:
“somatic sensory projections from the body surface and
muscles are arranged in an orderly way in the cortex”
(Kandel, Church, Jessell, 2000 p. 387). In the animal brain,
the origin of the sensory signals, and the destination of the
control signals is in the three dimensional space in which the
robot/animal is located. This three dimensional external
space, defined by the origin of the sensory signals and the
destination of the control signals may be mapped onto a set
of neurons within the controller, not by a conformal mapping
or by self organizing neural maps, but by the direct connec-
tivity between the pressure transducers on the 3-dimension-
al body and a neuronal coordinate frame within the controller
defined and indexed by the location of the pressure trans-
ducers.

2.1.1. A Biological Coordinate Frame in the Brain:
Suggested by the observed topographic 
ordering of neurons in the brain 
Figure 2 illustrates the transformation of the neuronal folds in
the brain into the 3-dimensional external (mirror) nodal map
containing the homunculus of the sensory self. Such trans-
formations are suggested by the mapping of the neuronal
folds of the somatosensory and motor cortex into an
homunculus defined by the distribution of mechanoreceptors
and muscle/motors throughout the body (Penfield and
Rasmussen, 1950). Off-body neurons, used to define the
flailing-limb’ space surrounding the homunculus, is not based
on any neurobiological observation, but is assumed to be
present in order to adhere to the constraint for the develop-

Figure 2. A somatotopic mapping: Transforming the cortical folds in
the brain into a 3-dimensional external nodal mapping.

Motor Cortex Mirror Nodal Map

Somatosensory Cortex

Somatotopic Mapping
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ment of a sensorimotor coordinate frame within the con-
troller. 

2.1.2. A Biological Definition of the “Self” at the
Center of the Topographically Ordered Neurons
The somatic sensory system is different from other sensory
systems in that its receptors are distributed throughout the
body. Thus the system is well suited for the definition of the
boundary between the “self” and the external world. The
mechanoreceptors, embedded in the dermis under glabrous
and hairy epidermal layers, have different axonal pathways
and stimulate different regions of the brain (Haines 2002, p
46). The mechanoreceptors that define the boundary of the
“self” in the external world may be used to define the “self”
and the space around the self, in the brain. 

2.1.3 The Robotic Self and the Robotic Near Space
The design of the “robotic self” in the RRC controller takes
the form of somatotopic and topographical substructures
made up of receiving neurons of a neural network. Each
receiving neuron of the somatotopic organization maintains a
one to one correspondence with a pressure transducer
(mechanoreceptor) located on the somatotopic organization
that makes up the “skin” surface. Those receiving neurons
that define the “self” in the controller are shown in Figure 3.
For visualization convenience the reverse-engineered input-
internal receiving neuron array in the RRC controller is
assumed to be configured in three dimensions similar to the
external distribution of tactile sensors rather than being con-
figured similar to the folds in the brain (see Figure 2). The
arrangement of the array of electronic neurons in the RRC is
illustrated in figure 4. Each node of the three dimensional
internal coordinate frame is the indexed location of a receiv-
ing neuron, receiving data from a tactile body sensor. The
origin of the system, shown in Figure 3, may be determined
by sensory data from the thoracic cavity transformed into a
receiving neuron at the center of the internal set of neurons
defining the thoracic cavity. The motion of all body parts may
then be determined relative to the internal center (origin) at
the thoracic cavity.
The near space, the space surrounding the robot and

defined by the position of flailing limbs in the external world,
may also be used to define the near space in the internal
regions of the controller. This definition is not based on neu-
rophysiological observations, but is assumed in order to
extend the coordinate frame suggested by the homunculus
to the near space surrounding the robot. Figure 3B illustrates
the total 3-dimensional flailing limb region covered by receiv-
ing neurons in the internal space within the controller (see
also Figure 3A and Figure 4). An electronic neuron may be
assigned to a nodal position in the internal near space even
though that position is unoccupied by a flailing limb. The
receiving neuron at the corresponding node may have tactile
data projected on it when and if the corresponding location in
the external near space is occupied by a flailing limb.
Regions of the external nodal map space unoccupied by flail-
ing limbs are defined in the internal map shown in Figure 4
by dormant receiving neurons. The signal originating from
each end-limb (associated with each robotic joint), and
received by a receiving neuron is designated as the q-initial

page 5

Location of brain  
neurons that  
define the self

Location of dormant 
receiving nuerons that  
define the near space.

Figure 4. Regions of the near space un-occupied by flailing limbs
are defined by dormant receiving neurons. The positions of the
robotic fingers in the near space is determined by the angle measur-
ing transducers located on the shaft of each motor.

Figure 3. A coordinate frame within the controller. The neuronal coordinate frame (world map) shown in 3A, encompasses the total region of
space (the near space) defined by flailing limbs shown in 3B. All motion of limbs, head, shoulders, and hip is determined relative to the origin-
center of the internal coordinate frame, and the corresponding thoracic cavity-center in the external coordinate frame (see 3A).
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input signal. Thus, the current position-location of flailing
limbs, head, and hips may be determined by all q-initial sig-
nals, relative to the origin of the coordinate system. All
motion of robotic parts occurs relative to the fixed location of
the thoracic cavity, flailing limbs, head and neck rotational
motion, and hip rotational motion.

2.1.4. Mathematical designation of the various coordi-
nate spaces used in the design of the NCM-circuit. 
Table 1 is a listing of the various spaces and sub-spaces
located in the 3-dimensional space surrounding the robotic
body, and the reflection of that space or subspace into a set
of indexed receiving neurons located within the controller.  In
the following sections the various spaces will be referred to
by the mathmatical designators given in Table 1.
Coordinate frames in the 3-D space in which the robot is
operating.

2.2 Problem 2.  “Robotic self” Identification and
Location: How to program the robotic controller
to control the trajectory of motion (scratch trajec-
tory) of the robotic limbs
The limb must move towards any identified goal-point
defined by an itch-activated pressure-transducer. “Robotic
self-knowledge” in the RRC-circuit consists of data relating to
the location of the various bodily parts with respect to the ori-
gin of the coordinate frame located within the controller (see
Figure 3 A ). The robotic controller is required to “learn” the
location of each of its surface parts with respect to and relat-
ed to the other surface parts. This “itch-scratch-knowledge”
is gained by “learning” how to move, first the end-point of the
robotic finger and then all other moveable body parts
towards any and every other part of the robotic body. This
“robotic self knowledge” requirement generates a “known”
measure of the peripheral-surface space occupied by the
robotic body and also a “known” measure of the space sur-
rounding the robotic body (the near space defined by flailing
limbs). 

The motion of the robotic finger-calipers, illustrated in
Figure 1, is a function of motion of at least 4 hinge joints; the
motion of the fingers with respect to the hand, the motion of
the hand with respect to the wrist, the motion of the wrist with
respect to the elbow, and the motion of the elbow with
respect to the shoulder. The locations of all the joints are
simultaneously programmed by a combination of neural net-

works and inverse kinematics. When the motion of the robot-
ic finger-joint is programmed by neural networks, the
attached joints (hand joint, wrist joint, elbow-joint, and shoul-
der joint, etc.) are constrained by inverse kinematics and pro-
grammed by neural networks. For example, in order to
scratch an itch point on the knee, the robot is trained to move
the shoulder-joint, elbow-joint, wrist-joint, hand-joint, and fin-
ger-joint, in addition to the hip-joint and knee-joint, in order to
achieve a trajectory from the q-initial of the end-finger to the
knee-itch point. In order to achieve complete “robotic self
knowledge” by means of itch-scratch trajectories, in addition
to the itch-scratch finger training, the hand, wrist, elbow, and
shoulder must be trained to perform itch-scratch type trajec-
tories for the end-points of the hand, wrist, elbow, and shoul-
der respectively.

2.2.1 The Biological Initial Position of a Flailing Limb
The initial position of a flailing limb is generally determined
by signals received from the muscle and joint proprioceptor
receptors. The perception of limb position and movement is
mediated by three main types of peripheral receptor that sig-
nal the stationary position of the limb and the speed and
direction of limb movement:

1. Mechanoreceptors located in joint capsules. The joint
proprioceptors respond to changes in the angle, direction,
and velocity of movement of the joint. 

2. Muscle spindle receptors: Mechanoreceptors in mus-
cles that are specialized for the detection of changes in mus-
cle length (stretch).

3. Cutaneous mechanoreceptors from Golgi tendon
organs monitor muscle tension, or force of contraction. There
are 2-sub-modalities of limb proprioception: the sense of sta-
tionary position of the limb (limb position sense) and the
sense of limb movement (kinesthesia), (Kandel, Schwartz, &
Jessell, 1991)7.

2.2.2 The Reverse Engineered Initial Position, q-ini-
tial, of a Robotic Finger in the RRC-near Space
In the robotic model, the muscles of the biological arm are
reverse-engineered by a robotic arm with no more than three
motors at each joint replacing each muscle set. The proprio-
ceptors data are reverse-engineered by angle measuring
transducers that measure the torque-generated angular dis-
placement of the shaft of each motor. In order to connect a
signal originating at a q-initial position at the tip of a robotic
finger to its corresponding point in the near space of the
internal nodal map, one must convert the signals received
from a set of angle measuring transducers into the corre-
sponding nodal position data within the controller. Figure 5
shows the corresponding position of a robotic finger, as
measured by the angle measuring transducers, in the S-fin-
ger joint and S3-finger joint spaces. The internal nodal map
position of q-initial is a function of the angle location readings
that are transmitted to the RRC-controller at the rate of one
set of readings per frame period. 

In the design of the robotic arm, an intermediate circuit,
associated with each joint on the robotic body, is required in
order to convert all the angle measurements to a q-initial
location in the S-finger joint space. The intermediate circuit
then transmits the q-initial signals to the receiving neurons at
the corresponding locations within the controller.

A complete and separate intermediate circuit is associat-
ed with each robotic joint. The range of motion of each end
limb, and the possible q-initial locations covered by the end
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Table 1. Mathematical designation of the various coordinate spaces
used in the design of the NCM-circuit.
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limb depend on the number of joints between the end limb
and the center of mass of the system. For example a robot-
ic finger end-joint defines a conical region with apex at the
shoulder. The length of the cone is determined by the total
length of the arm from the shoulder to the finger-tip and con-
ical angle is determined by the angular range of motion of the
arm with respect to the shoulder. The robotic elbow end-joint,
on the other hand, covers a smaller conical region that is
determined by the length of the upper arm from the shoulder
to the elbow. The angular inputs from the angle measuring
transducers located at all intermediate joints between the
end-joint and the center of mass are applied to the interme-
diate circuit that is associated with the end-joint. The q-initial
position of a robotic end-joint is a function of all the inverse
kinematics angular positions of all the intermediate circuit
between the end joint and the center of mass of the system.

The simplest design of an end-joint related intermediate
circuit connects the N-outputs of the circuit, by means of thin
wire fibers, one to one, to each of the N-neurons that define
that portion of the internal near space determined by the
range of motion of the limb end-joint (the S-end joint space).
The output of each intermediate circuit is applied to any of
the possible N-nodal locations that define the S-end joint
space. A computer program at each intermediate circuit may

be used to determine the q-initial of the end-joint, and trans-
mit that location, via the correct fiber, to the indexed location
of q-initial within the controller. Each indexed near space
nodal location may contain multiple neurons associated with
different intermediate circuits for each end-joint qi-location
(qi-elbow, qi-wrist, qi-hand etc.) (Rosen, Rosen 2003a)

The designer of the system may calculate and test (by
inverse kinematics techniques) the angular positions of all
intermediate joints, when the robotic finger end-joint is
moved through the itch-goal directed trajectory. Thus all the
intermediate circuits and positions of end-joint in the associ-
ated topographic mappings are simultaneously programmed
in the process of programming the primary end-joint. 

2.2.3 The Signals Applied to the Neural Net-based
Topographic Mappings
Given the input of the RRC-circuit, the q-initial and the goal
position q-final may be associated with the topographic dis-
tribution of neurons in the S-space (within the controller).
This space, consisting of a neural network representing all
S3-space q-input positions, is similar to the somatosensory
cortex, The control p-signals, the output of a neural network
within the controller, may be similar to the topographic distri-
bution of cortical neurons (see Figure 5). These two topo-
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Figure 5. A flow diagram of the q-vectors and p-vectors through the neural net portion and microprocessor based portion of the RRC. The out-
puts of all the Nodal Map Modules (associated with all the joints of the robotic body) are applied to the Sequence Stepper Modules, and the
Control Pulse Modules, in order to control the motion of the wrist from q-initial to q-final (shown as a sequence of control vectors po, p1, p2, in
the figure).
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graphic distributions form an input/output neural network cir-
cuit within the controller, which is used to train the Nodal Map
Modules, via the training path shown in figure 5.

2.2.4 The Design of the Nodal Map Modules
In the reverse-engineered design of the RRC these two topo-
graphic distributions are combined into a single unit called a
Nodal Map Module. One Nodal Map Module is assigned to
each joint and the associated S-end-joint space. The number
of Nodal Map Modules in the RRC system is equal to the
number of joints present in the robotic body. The combined
sensory input and motor control output formed by a conjunc-
tion of topographic distributions (in a single S-end joint
space) is shown in Figure 5. A set of p-signals known as
table-line entries are assigned to each node of a Nodal Map
Module. In a trained Nodal Map Module each table-line entry
p-signal must represent an exact displacement of an end-
joint to an adjacent node. The set of 8p-table line entries is
shown in Figure 5 for the 2-dimensional Nodal Map Module
that is associated with one robotic joint.  The q-initial location
of the end-joint is applied to only one node of the total num-
ber of nodes in the Nodal Map Module. The location of the q-
initial signal is determined by the angle measuring transduc-
ers and all the intermediate circuits, and is applied to the cor-
responding q-initial position in the end-joint dedicated Nodal
Map Module. When the end-joint location, q-initial is at a
given nodal location, the correct p-signal table-line entry at
that node, applied to the end-joint, generates an exact tran-
sition to an adjacent node. Training the Nodal Map Module to
apply the correct set of p-signals (in the S-end joint space) to
the motors in the S3-end-joint space is discussed in section
2.4.

The number of p-q Nodal Map Modules required to
achieve “self” knowledge by the locomotive (itch-scratch)
control of the total body, is equal to the number of joints in the
body. Each joint in the body is associated with a set of motor
control neurons in the brain that may control up to three
degrees of freedom per muscle joint. For example, the mus-
cles of the upper arm control the motion of the elbow with
respect to the shoulder, whereas the muscle set of the lower
arm controls the motion of the wrist with respect to the elbow.

In each case, two or three motors and angle measuring
transducers are required at each joint (as shown in Figure 1).
A p-q Nodal Map Module is required for each joint in the ani-
mal body. The q-initial position of the part associated with
that joint is applied to the corresponding p-q Nodal Map
Module associated with the S-end joint space. 

The reverse-engineered brain is a giant parallel process-
ing unit that simultaneously controls all the joints present in
the body. Excluding all facial muscles and joints there are
approximately 65-joints in the human body (34-arm, 26-leg
and 5-hip shoulder and neck (Rosen & Rosen, 2003b)).
Therefore, in order to model the locomotive actions of the
human body 65-p-q Nodal Map Modules may be required in
order to achieve “robotic self-knowledge” by the locomotive
“itch-scratch” control of the robotic body. The output signals
of each joint related Nodal Map Module consists of sets of
signals that control each muscle set used to displace that
particular joint-limb. The total reverse-engineered output of
the RRC, generated by the total (21) S-end joint Nodal Map
Modules, consist of all the outputs to all the robotic
motor/joints associated with all the motor/muscle sets of the
body.

Figure 6 is a block diagram that shows an array of Nodal
Map Modules and the central location of the large number of
“self-location and identification” Nodal Map Modules that rep-
resent a topographic mapping of a 3-dimensional coordinate
frame (the S3-space). Each Nodal Map Module consists of a
conjunction of the q-input and p-output associated with the
S-end joint space. The topographic mappings associated
with the totality of Nodal Map Modules form a combined con-
trol and sensory signal model of the homunculus of the robot
with the center of the homunculus located at the origin of the
coordinate frame. Each node of each Nodal Map Module has
a set of p-signals (table-line entries) associated with it. The
q-initial location of each end-joint always appears at one
node of the joint dedicated Nodal Map Module. The p-signals
cause a displacement of the end-joint at q-initial to an adja-
cent node. For example in Figure 5, the displacement of the
wrist (controlled by the elbow-joint Nodal Map Module) takes
place between a set of three adjacent nodes, from q-initial to
q-final.
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2.3 Problem 3: How to design the RRC so that the
trajectory of motion is pre-planned and goal
directed with the option of re-planning (obstacle-
avoiding) a pre-planned trajectory
The RRC is designed to perform obstacle avoidance if an
obstacle were to appear along a pre-planned itch-point goal
directed trajectory. Obstacle avoidance is implemented by
applying two design constraints on the system. The first is
that all motion should be pre-planned and end-point goal
directed. The second is a volitional constraint that allows a
volitional robot the option of re-planning a pre-planned trajec-
tory whenever an obstacle is detected along the path of the
pre-planned trajectory4. Portions of those two constraints
have been studied in the cognitive neuroscience literature.
See for example Gazzaniga, Ivry, Mangun, (1998). A discus-
sion of the neurobiological basis for these constraints is pre-
sented in section IV-1. 

In order to design the RRC so that the trajectory of motion
is pre-planned and goal directed with the option of re-plan-
ning a pre-planned trajectory, the trajectory of motion is
decomposed into small transitions to adjacent nodes. During
each frame period the total goal directed trajectory is deter-
mined by the RRC as a pre-planned sequence of small tran-
sitions. However, during any frame period, only the first small
transition is activated by the controller. It is therefore possi-
ble for the controller to be re-programmed to perform a differ-
ent trajectory before the pre-planned trajectory is executed. 

2.4 Problem 4. How to train/program the RRC to
perform “location” and “itch-scratch” type
actions:
The training of a Nodal Map Module proceeds with the
requirement that a nodal transition between two adjacent
points in the S-end joint space, is a measure of a nodal tran-
sition between two adjacent nodes in a S3-end joint space
external to the robot. In each Nodal Map Module associated
with each robotic joint, the trajectory of motion of a robotic

part is controlled by a sequence of nodal transitions occur-
ring at the rate of one nodal transition per frame period.
When all the Nodal Map Modules are activated, the output of
the RRC consists of 39-motor p-signal and 21-joint displace-
ments that are coordinated and synchronized with each
other. The maximum displacement rate for coordinated and
synchronized trajectories is one nodal displacement per joint
per frame period. All the nodes of each Nodal Map Module
must be trained with a set of p-signal-table line entries
assigned to each node, before it may be used to control the
motor actions of the robot. 

2.4.1 Training Each Nodal Map Module
Training each Nodal Map Module is accomplished by use of
a modified “Hebbian” learning rule (Hebbs, 1949). Figure 7 is
a training flow diagram of the p-vectors and q-vectors
through the RRC during one frame period (21-Nodal Maps
Modules are trained simultaneously during each frame peri-
od). Two paths are shown in the figure, a training path and
an operational path. Training is performed on the Nodal Map
Modules and on the Sequence Stepper Modules. The Nodal
Map training consists of the tabular assignment of a correct
set of p-value-table line entries to each nodal location of the
Nodal Map Module. The correct p-value, a table-line-entry, is
that p-signal that causes an exact motor displacement of a
robotic part, to an adjacent node (see Figure 5). A More
detailed description of the training of all the nodes of an
RRC-circuit, to perform a complete set of “itch-scratch” motor
control tasks is described in an article titled “The Engineering
Design of a NCC-circuit for the Sensory-motor Control of a
Robotic Arm” (Rosen, Rosen, 2003b).2.4.2 The Task
Selector Module and the Sequence Stepper Module

The Task Selector Module (TSM) generates the q-final
“itch” location and motivates the robot to perform a “scratch”
action aimed at the “itch”-point. For training purposes, the q-
final “itch” location may be artificially generated by the TSM
and applied to the appropriate q-initial-defined Nodal Map
Module. The TSM-activated q-final “itch”-location becomes a
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Task-initiating Trigger (TT) that activates the Sequence
Stepper Module to examine the region in the Nodal Map
Module, between q-initial and q-final, and select a pre-
planned trajectory between q-initial and q-final. 

2.4.3 The Corrected Set of p-values Assigned to
Each Nodal Map Module
The method of selecting the correct set of control signals (p-
values for all the motors associated with the 21-robotic joints)
required to move a robotic part from q-initial to q-final, is
shown in Figure 7. The p-vector assigned to each node of
each Nodal Map Module is first calculated, estimated and
tested by the designer (the magnitude is designed to gener-
ate an exact transition to an adjacent node, and the direc-
tions, often determined by inverse kinematics, are calculated
for each of the end-joints). Figure 7 shows that the estimat-
ed p-values are then corrected repeatedly until the correction
factor increment (CFI<∂) approaches zero. 

The correct table-line p-value at the initial node is that

value that generates an exact displacement from the initial
node at q-initial to the adjacent node at q-final. Correction of
the table line entry p-value proceeds by noting the displace-
ment error generated by the set of p-initial and applying a
correction factor so that the set of p-initial (corrected) leads
to an exact transition to the final node defined by q-final (see
Figure 7).

A Nodal Map Module is said to be “trained” if each nodal
table, assigned to each node, is made up of a complete set
of p-signal line entries. Each p-signal line entry causes an
exact motor displacement to an adjacent external nodal posi-
tion. The set of table line entries assigned to each nodal
table consists of all the p-signals that lead to exact transi-
tions to all adjacent nodal positions. At each node there are
27-p signal transitions to adjacent nodes in a three dimen-
sional nodal map, and 8-p signal transitions to adjacent
nodes in a two dimensional nodal map (see Figure 5). 

2.4.4 The Training Procedure
A pictorial representation of a laboratory set-up to train the
itch-scratch robot is shown in Figure 8. The robot is attached
at its center of mass, and all itch-scratch trajectories are per-
formed relative to the center of mass. The robot is pictured
with three coordinated and synchronized trajectories of
motion: scratching the head with the right hand calipers and
scratching the knee with the left hand calipers while lifting the
right leg. 

In order to train the robot to perform all possible itch-
scratch trajectories, the q-final-itch point is initially selected
at nodes that are immediately adjacent to a q-initial. For each
nodal map, and for each node defined in that map, the train-
ing proceeds with the q-final location placed at distances of
two, three, four, and more nodal distances from q-initial.
When all the nodes of all the nodal maps associated with all
the joints of the robotic body are fully trained, the RRC-circuit
is said to exhibit “robotic self knowledge.” The robot may
have “learned” by this programming methodology how to
move a robotic limb towards any and every part of the robot-
ic body.

2.4.5 An Example of Programming the Configured
Neural Network
Training the Nodal Map Modules is performed by following
the training path shown in Figures 5 and 7. The first step in
the process is to select a Nodal Map module devoted to the
control of the end-joint used for the scratch motion. Initially
all the goal-defined itch-points and all the q-initial of the end
joint are restricted to all the nodes defined by the S-and S3-
end joint space. The next step is to solve only that small por-
tion of the neural network (A subset of sensory neurons and
motor neurons illustrated and labeled as, A, and, A’, in Figure
5) that covers the S-and S3-end joint space. The solutions to
the equations consist of a set of control p-signals, table line
entries, assigned to each node of the S-end joint Nodal Map
Module. In this case, given the input to a portion of the
somatosensory topographic distribution of the configured
neural network shown in figure 5, and the output of a portion
of the configured motor distribution of p-generating neurons
(Figure 5), a complete solution to the training of the Nodal
Map Modules may be obtained. 

A pictorial representation of the configured neural net sur-
face layers associated with the somatosensory cortex and
the motor cortex is shown in Figure 9. The planes A and A’,
shown in Figure 9, have been selected to be parts of the
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Figure 8. A pictorial repreaentation of a laboratory setup used to
train an "itch-scratch robot. The robot is pictured with three trajecto-
ries of motion: scratching the head with the right hand calipers and
scratching the knee with the left hand calipers while lifting the right
leg. 



Nodal Map Module that is devoted to a single joint of the
robotic body. The plane, A, shows the neural network’s
nodal positions of q-initial of the end-joint, qix, and the q-
final, qfx, generated by the TSM (in this case, qfx is selected
by the designer to fall within the S3-finger space). The pri-
mary activation of qix and qfx generate secondary activa-
tions (coupling) between all the neurons located in plane A.
All activations (primary and secondary) of all neurons in pane
A, may activate the control signal generating neurons locat-
ed in the neural network of plane A’. However, in the solution
to the neural network equations, the threshold, ø, and the
coupling strength, Grr’, have been selected so that second-
ary activations do not contribute to the input of plane-A’ (see
equations numbered 1, 2 and 3).

The equations for plane A’: For a joint with 2 or 3 degrees
of freedom (2 or 3-motors per joint), the output of Plane A’
may be given by either Px, Py (2-motors) , or Px, Py, Pz (3-
motors). For each joint, the set of P-signals generated during
one frame period, cause a single nodal displacement of the
end joint associated with the joint-motors. The displacement
generating total torque may be specified by 

P2d = aFr1 + bFr2 (for 2-degrees of freedom)     

P3d= aFr3 +bFr4 + cFr5  (for 3-degrees of freedom)

Where the components Fri, the output of each of the i-neu-
rons is given by Ritter’s equation (Ritter et al, 1992)

Fri = µ(∑Wrl Vi + ∑Grr’Fr’ –ør).

The neuron-r denotes the receiving neuron of the external
input to plane A’. The term Wrl is the synoptic weight
between neuron-r and neuron-l and the summation is carried

out over all l-neurons, from 1 to N (N is the total number of
neurons that represent the range of motion of the end-joint
that defines the Nodal Map Module). The term Grr’ is the
coupling strength between the neuron-r and all the internal r’-
neurons, activated by Fr’. The term ør is the threshold of
neuron-r. Vi represents the input to plane A’, and is the out-
put of plane A, determined by a solution to Ritter’s equation
applied to plane A.

The equations for plane A: The total input to plane A,
associated with the somatosensory cortex illustrated in figure
5, activates only 2-input neurons, q-initial and q-final, denot-
ed as qi and qf respectively. If the threshold ø, and coupling
strength Grr’ are chosen so that

Equation 1:  ∑ Grr’Fr’ ≤ ør, 

then there are only 2-output solutions of plane A, given by
the output of the qi-neuron, and the qf-neuron. The solutions,
representing the inputs to plane A’, are

Equation 2: Vi = qi + Gif – øi

Equation 3 Vf = qf + Gif – øf

Solving the equations for plane A’: There are now only two V-
inputs to plane A’. Ritter’s equations for plane A’ may thus be
written as 

Equation 4: Px = WixVi + Wfx Vf –øx

Equation 5: Py = Wiy Vi + Wfy Vf – øy

A sixth equation may be obtained by noting that the mag-
nitude of each displacement is measured to be exactly one
nodal length, and the direction must be one of 8 or 27 differ-
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ent directions, depending on whether the joint is a 2-dimen-
sional or 3-dimensional degree of freedom joint. For exam-
ple, for a 2-degree of freedom joint, the sixth equation may
be written as:

Equation 6:  Px = f (Py) 

The numerical solution of the 6-neural network equations
with 6-unknowns, is presented in detail in a publication by
Rosen and Rosen (2003b), titled “The engineering design of
an NCC-circuit for the sensory motor control of a robotic
arm.” For example, numerical solutions for 

Px, Py, Vf, Vi, W, and ø, are obtained by setting   

Wij = Gij = W,  and øi = øf = ø. 

Some numerical solutions, The thresholds, ø, associated
with Px, Py, Pz, are also shown in Figure 9 (Rosen and
Rosen, 2003b).

The equations presented above follow Ritter’s develop-
ment of an electronic neural net layer in the form of a two
dimensional sheet (Ritter et al, 1992). The layers A and A’ are
surface layers configured as receiving neurons shaped like a
a portion of a homunculus (see Figure 3, Figure 4, and
Figure 5). However, in the case presented above, the Ritter
equations are solved at exact neural locations rather than at
spatially localized region of the layer (Kohonen, 1982a). The
mapping/transformation of somatic locations into the con-
troller determines exactly which neurons on the arrays are
activated. This direct-wire method of mapping the somatic
sensors and motors into topological maps and patterns
reverse engineers the connectivity of the biological central
nervous system. Most other published neural network mod-
els make use of mathematical analyses of self- organizing
processes (Kohonen, 1982b) and analyses and transforma-
tions of topographical maps and processes (Kohonen,
1982c). 

2.5 Overview of the Design of the RRC Circuit
The RRC-circuit consists of a hybrid set of circuits wherein a
portion of the input and output layers (shown in Figure 5) are
neural net based and intermediate subsystems are based on
algorithmic sequential programming. The input circuit to the
RRC is a configured neural network where the “robotic self”
is at the center of the coordinate frame. Un-configured neu-
ral network circuits have been applied to the study of the
adaptive brain by Stephen Grossberg and his associates at
Boston University (Grossberg, 1987a,b,)8. 

The detailed solution to the neural network portion of the
RRC and the electronic design of the Nodal Map Module, the
Sequence Stepper Module, and the Control Signal-output
Module is described by Rosen and Rosen (2003 a, b) in a
papers titled a) “The design of a Volitional, Obstacle Avoiding
Multi-tasking Robot”, and b) “Engineering Design of an NCC
circuit for the Sensory-motor Control of a Robotic Arm con-
trol of the somatic motor system.”

III. RESULTS

1 FUNCTIONAL SIMILARITY BETWEEN THE
ROBOTIC CONTROLLER AND THE
BIOLOGICAL BRAIN

The previous sections presented a well-defined building path
for a robotic model consisting of a robotic body controlled by
a robotic controller. The robotic body and controller are
designed to have some functional and mechanical character-
istics similar to the human body and brain. The functional
similarities of the controller to the operation of the brain
include:

1. The controller is a giant parallel processor that controls
all the motors and joints of the robotic body simultaneously
with a response time of 1/30 second and with synchroniza-
tion and coordination of all body parts.

2. The pressure transducer-sensory system constantly
monitors the peripheral surface of the robotic body for tactile
activations. Two types of activation are designed into the
system, low-pressure and high-pressure thresholds of acti-
vation. The low-pressure threshold of activation is analogous
to the biological modality of “touch-feel”. Whereas the high-
pressure activation threshold is analogous to the biological
modality of “touch-pain.” 

3. Similar to the biological brain, the controller has within
it a reflection of the robotic self, defined by pressure trans-
ducers (surface distribution of mechanoreceptors), that lead
to a definition of a coordinate frame that is the origin of the
input signals (mechanoreceptors) and the destination point
of the output signals (muscle/motors). 

4. The coordinate frame defined by the origin of the sen-
sory signals and the destination of the control signals, is
transformed into  a configured neural network within the con-
troller (simulating the neuronal folds of the somatosensory
and motor cortex), not by a conformal mapping or by self
organizing neural maps, but by the direct connectivity (affer-
ent and efferent axons) between the 3-dimensional body and
the central connections in the brain. All perceived tactile-acti-
vation data originating in the external frame are transformed
and mapped, by means of direct connections associated with
the nervous system, into a coordinate frame located within
the RRC-controller.

5. The measure of the internal coordinates is calibrated
with the measure of the 3-dimensional space in which the
robot is operating. 

6. The “robotic self” and the motion of the mechanical
limbs of the robot with respect to the center of mass of the
“robotic self” are fully defined and controlled in the internal
coordinate frame as well as the external coordinate frame. 

7. Similar to the biological brain, the controlled trajectories
of motion are pre-planned and goal directed with the option
of re-planning any planned trajectory. The control of “itch
scratch” motion is goal directed and the robot has the option
of re-planning (within 1/30-seconds), a pre-planned trajecto-
ry of motion in the midst of the action. 

8. All the motors of the NCM-robot are trained simultane-
ously by means of neural networks that are initially pro-
grammed by inverse kinematics, whenever training is per-
formed on a single end-joint associated with a Nodal Map
Module.
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9. The NCM-robot has the capability to be trained to per-

form a diverse set of actions guided by the goal directed q-
final of the Task Selector Module, and limited only by the
design of the sensory system, the sophistication of the neu-
ral networks in the controller and the design and the range of
motion of all robotic moveable parts (Rosen & Rosen,
2006,a, b). 

10. The tactile NCM-system has been expanded to a visu-
al NCM (Rosen & Rosen, 2007 c,d) and into a multi-tasking
NCM-robot that can walk, jump, and dance, and perform any
set of multi-tasks defined by the designer in a Hierarchical
Task Diagram (HTD) (Rosen & Rosen, 2006 a, b). 

IV. DISCUSSION

The discussion is divided into 4-parts. Part 1 discusses the
neurobiological basis for the assumed engineering con-
straints imposed on the NCM-system. Part 2 compares the
overall robotic sensorimotor control functions with the senso-
rimotor control functions of the human brain. Part 3 com-
pares the connectivity of the robotic sensorimotor control
system the neurophysiology of the brain. And Part 4 com-
pares the connectivity of a biological modality with a
“mechanical modality.” 

1. THE NEUROBIOLOGICAL BASIS FOR THE
ASSUMED ENGINEERING CONSTRAINTS
IMPOSED ON THE NCM-SYSTEM

The first 3 sections of this paper present a robotic model of
a robotic body and controller that reverse engineers some
functional characteristics of the human body and brain. The
design approach is aimed at reverse engineering the con-
nectivity associated with the itch-modality (the subjective
experience of “itch-feeling”) of the mechanoreceptors that
are distributed on the skin surface of the human body. The
system is designed to mimic the itch-scratch behavior pat-
terns of humans. Operational engineering constraints on the
design of the itch-scratch robotic system are selected so that
they could be related to assumed biological analogues of
itch-scratch behavior pattern of biological organisms. They
are quantitative functional constraints imposed on the robot
controller, and do not imply that the proposed implementa-
tion of each constraint is similar to the biological implemen-
tation actually present in the human body and brain. In the
following sections, the neurobiological basis for the selected
implementation is discussed in terms of the functional and
structural (physiological) similarities between the itch-scratch
robot and a biological itch-scratch organism. 

1.1 The neurobiological basis for a coordinate
frame within the controller
The activated tactile sensors that are uniformly distributed on
the skin surface also activate the central connections in the
brain. In this paper, the central connections are reverse engi-
neered by a neural network located within the controller. This
neural circuit within the controller forms a coordinate frame
that monitors, locates, and identifies each itch activation and
all the biological parts used to scratch each itch-point. What
is the neurobiological basis for such a coordinate frame?
a) A coordinate frame defining the homuncular body, and the

center of mass (CM-origin) of the homuncular body: The
directly-wired transformation of the mechanoreceptors dis-
tributed on the robotic body into a mechanical “homunculus”
within the controller is suggested by the discovery of a bio-
logical homunculus in the somatosensory and motor cortex-
es (Penfield and Rasmussen, 1950). There is no biological
evidence that the homunculus functions as a coordinate
frame in the brain. However, the existence of such a coordi-
nate frame is suggested by the comparison of the overall
robotic sensorimotor control functions with the sensorimotor
control functions of the human brain (section IV-2).
b) The coordinate frame within the controller, associated with
the region around the homunculus, is defined by electronic
receiving neurons that sometimes receive signals from
mechanoreceptors that are located on the flailing limbs of the
robot: The choice of dormant (indexed) receiving neurons
within the controller for the definition of the near space was
made by extending the coordinate frame of the homuncular
body and the center of mass in the body to the region of
space, the near space, around the homuncular body. This
extension is not based on neurobiological observations of
such dormant receiving neurons.

1.1.1 Is there any neurobiological evidence for a
coordinate frame in the biological brain?
First, There is no biological evidence that suggests that the
topographic distributions that give rise to the homunculus
(Penfield and Rasmussen, 1950), or the topographic struc-
tures called “brain modules (Purves et al,) are functionally or
physiologically, a coordinate frame located in the brain.
However, the homunculus, which is a “way of illustrating the
location and amount of cortical area dedicated to a particular
function” (Kandel et al 2000, p. 344), is suggestive of a map-
ping or transformation within the brain that is based on the
conclusion of Kandel et al, (2000, p.387) that “somatic sen-
sory projections from and to the body surface and muscles
are arranged in an orderly way in the cortex.” 

Second, The reverse engineered coordinate frame, and in
particular the dormant receiving neurons that define the near
space, is one of a number of possible alternative implemen-
tations of a coordinate frame within the controller. 

The following relates to the question of how is the coordi-
nate frame implemented in the biological brain? First, the
authors are not committed to the simplified extension of the
homuncular mapping to dormant receiving neurons that form
a near space. Alternative views such as Francisco Varela
(1991), Scot Kelso (1995), Rodney Brooks (1989a,b), Walter
Freeman, (2000) and Gerald Edelman (1989), do not favor
the existence of a coordinate frame within the brain, and
Bressler and Kelso (2001) have not established the exis-
tence of off-body receiving neurons in the brain. 

Second, the authors have not discovered any biological
observations that rule out the existence of a coordinate
frame in the brain. And although an alternative implementa-
tion different from the off-body dormant receiving neurons,
may exist in the human brain, the authors favor additional
research that includes the possibility of a dormant receiving
neuron type coordinate frame, among the other possibilities. 

Third, although the authors do not wish to argue that the
connectionist reverse engineering approach is the “most bio-
logically veridical.” They do present evidence in section IV-2,
and IV-3  that it is biologically competitive with other
approaches that compare the robotic and biological sensory
motor control functions. 

page 13



Reviewers Draft
1.1.2 Alternatives to a coordinate frame in the brain
Alternatives to a coordinate frame in the biological brain have
been presented by Varela, et al, (1991), among many others.
It should be noted that Varela (1991), Edelman (1989),
Freeman (2000), and to some degree Kelso (1995),
approach the study of the brain by modeling symbolic repre-
sentations and coordination dynamics6, rather than the con-
nectivity of the brain (the approach favored in this paper5).
For example, symbolic representations lead Varela et al
(1991) to seek common ground, and develop a dialogue
between cognitive science and Buddhist meditative psychol-
ogy. Bressler & Kelso (2001),  utilize synergistic concepts of
self organization and the mathematical tools of non-linear
dynamical systems (mainly coordination dynamics) to model
observations of cooperative phenomena in the body and
brain. When applied to the dynamical properties of cortical
areas and their coordination, these symbolic representations
yield inter-area pattern constraints that are postulated to
underlay all cognitive operations of the brain. However, coor-
dination dynamic6 relates the interaction between different
cortical areas, it does not address the detailed internal oper-
ation (The connectionist data) of these individual areas5.
The approach presented in this paper is a connectionist
approach wherein both the detailed connections and the
coordinated inter-relationship between the different modules
is designed into the system ( see “The approach of physical
reductionism” (Amit, 1989, Chapter 1)).

None of the symbolic representational studies, listed
above (and in footnote 6), invalidate the connectionist
approach of mapping motor nodes or mechanoreceptors into
a 3-dimensional space. On the other hand, they also do not
validate this approach. It should be noted, however regard-
less of whether a connectionist or symbolic implementation
is used, it is shown in section IV-2, that the existence of an
internal coordinate frame in the brain leads to a sensory
motor control system that is biologically as veridical or possi-
bly more veridical than symbolic representational sensory
motor control models.

1.2  Reverse engineering Proprioceptive control
and inverse kinematics control by means of angle
measuring transducers and an inverse kinematics
intermediate circuit
Angle measuring transducers and inverse kinematics inter-
mediate circuits are used to reverse engineer the biological
proprioceptive position measuring sensors. There is no bio-
logical evidence for the existence of angler measuring trans-
ducers in the human body, or a set of intermediate circuits in
the brain that generate precise biological proprioceptive
position data. The angle measuring transducers and the
inverse kinematics intermediate circuits were selected as rel-
atively simple building paths that yield robotic self knowledge
of the position of all end-limbs with an accuracy equivalent to
the biological proprioceptive position-knowledge (Kandel et
al, 2000)7.

1.3 Constraints Associated With Mechanistic-
Volitional Control of all itch-scratch trajectories.
The mechanistic constraint applied to the NCM-circuit is that
the itch-trajectory must be pre-planned and goal directed
with the option available for re-planning the pre-planned tra-
jectory if the sensory system detects an obstacle along the

pre-planned path. This constraint is a mechanical analogue
of biological volition4. 

1.3.1 Is there any neurobiological evidence for these
constraints?

a) Goal directed representation of movement plans:
Neurobiological evidence for end-point planning and goal
directed representations of movement plans is presented in
the 1998 edition of Cognitive Neuroscience (Gazzaniga et al,
1998, p. 381-382). Experiments performed by Bizzi et al
(1984) support end point planning and goal directed action.
However, cellular activity experiments in the primary motor
cortex also reveal correlation with movement direction,
movement location, and movement distance. In addition
Kandel (2000, p.350) also discusses goal directed action
observed in the multimodal association areas of the cerebral
cortex.

b) Planning the goal directed action: Motor planning activ-
ity has been observed in different areas of the cortex.
Kandel, (2000, p.470) writes, “Each pre-motor area con-
tributes to different aspects of motor planning. Different
areas of the cortex are activated during simple, complex, and
imagined sequences of finger movement.” The cortical activ-
ity of imagined sequences of finger movement may be asso-
ciated with pre-planning the sequence of finger movements
(Roland et al, 1980).

c. Re-planning a pre-planned trajectory: The possibility of
re-planning is illustrated by the experiments of Libet et al
(1982) that demonstrate a 550 millisecond gap in the readi-
ness potential preceding unrestricted “spontaneous” versus
pre-planned voluntary acts. The observed gap allows for pre-
planning neuronal activity preceding the initiation of move-
ment action, since the frame period of the NCM-robot is 31
milliseconds, less than one tenth the gap observed by Libet
et al (1982). Note that in the NCM-robot, the gap, if it repre-
sents the cortical activity associated with re-planning or pre-
planning, does not support the “free will” hypotheses put
forth by Libet (1985)4. 

2. A COMPARISON OF THE OVERALL ROBOTIC
SENSORIMOTOR CONTROL FUNCTIONS WITH
THE SENSORIMOTOR CONTROL FUNCTIONS
OF THE HUMAN BRAIN

2.1 The symbolic representational approach to
interlimb coordination and dynamics6

Most modern publications in robotic engineering generally
study the design of isolated cognitive simulators (Brooks,
1989a)9 (see for example Westervelt & Canudas-de-Wit
(2007) and Bekey, 2005). Turvey (1990), for example pres-
ents a symbolic representational approach to inter-limb coor-
dination and dynamics, rather than the study of how objects
move under the action of forces (the force-mass-acceleration
approach). Coordination dynamics deals with changes in
systems, and tries to express its existing and evolving states.
Scott Kelso (1995), utilizes the symbolic logical approach of
coordination dynamics (synergistic concepts of self organi-
zation and the mathematical tools of non-linear dynamical
systems) to model observations of cooperative phenomena
in the body and brain.
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2.2 The connectionist approach5

The distinguishing characteristics of the NCM-sensory motor
control system is that the authors have embraced the reduc-
tionist approach (connectionism) rather than modeling the
brain by use of symbolic representations of cooperative phe-
nomena in the body and brain. Symbolic representations
generally lead to the design of a conglamerate of isolated
cognitive simulators, whereas the connectionist approach
described in this paper, leads to the design of a robot that
may be regarded as a “complete creature” (Brooks, 1989a).
The NCM-robotic system consists of:

1. A giant parallel processor that controls all the motors
and joints of the robotic body simultaneously with a response
time of 1/30 seconds and with synchronization and coordina-
tion of all body parts.” 

2. Bypasses the representational coupled nonlinear
dynamical system. All couplings of all joints are constrained
by inverse kinematics, whenever training is performed on a
single end-joint associated with a nodal map module (see
Section III-1). 

3. The multi-tasking NCM-robot is a “complete creature”
rather than a conglomerate of isolated cognitive simulators
(Brooks, 1989)9. 

4. The coordinate frame within the NCM combines all
movement representations by learning (programming) the
total system rather than a separate isolated cognitive simu-
lation for each movement plan. 

2.3 Contrasting the coordinate frame within the controller
with coordination dynamics

The NCM-circuit, and the connectionist approach in gen-
eral, does not reflect modern notions of coordination which
center on coupled non-linear dynamical systems (Swinnen et
al, 1994). The coordinate frame within the controller, a) incor-
porates all sensory signals and motor signals into that coor-
dinate frame, b) the training and operation of the total robot-
ic body (all 21 joints) is performed in the coordinate frame
located within the controller and c) the volitional characteris-
tics of the NCM-circuit, allows the authors to dispense with
the mathematics of nonlinear dynamical systems to describe
coordinated and synchronized movements, and avoid multi-
ple designs of isolated cognitive simulators (see references
listed above). Thus the NCM-robot a) may be taught (pro-
grammed) to perform synchronous and coordinated hand,
foot, and body movements, b) is a multi-tasking robot (Rosen
& Rosen, 2006) that may learn to walk, run, jump and dance
in all terrains and in multiple orientations, and c) may even
exhibit malfunction/recovery  characteristics that are analo-
gous to brain plasticity observed in recovering stroke victims
(Schwarts and Begley, 2002 )10. 

3. A COMPARISON OF THE CONNECTIVITY OF
THE ROBOTIC SENSORIMOTOR CONTROL
SYSTEM WITH THE NEUROPHYSIOLOGYOF
THE BRAIN

What does the NCM-circuit contribute to the study of the
small and large scale organization of the biological motor
system?  

3.1 The neurophysiology of motor control
The NCM-circuit offers a complete functional sensory motor

control system that integrates all the sensory functions and
all the motor control functions by means of a single coordi-
nate frame located within the controller. The building path of
the integrated coordinate frame compared with the study of
the cortical areas involved in the sensory motor control func-
tions may shed light on the hierarchical and redundant
organization of the biological motor system. Kandel et al
(2000) says: “the processing of sensory inputs and com-
mands to motor neurons and muscles is distributed in hierar-
chically interconnected areas of the spinal cord, brain stem,
and forebrain”. In addition, M1 and many brain regions,
including the Cerebellum and Basal Ganglia play crucial
roles in the implementation of coordinated movement by the
brain and body. Each of these regions takes sensory input,
and their output may descend either through the hierarchy or
in some cases directly to the spine. Of crucial importance is
that lesions to each of these areas produce different behav-
ioral deficits (Kandel et al 2000). Bressler and Kelso (2001)
say: “Movement attributes at the extrinsic kinematic, internal
kinematic, and dynamic levels have been found to be con-
trolled by locations distributed over several motor cortical
areas, suggesting that multiple areas must coordinate their
activities during normal motor behavior”. 

3.2 The contribution of the NCM-sensorimotor
control circuit to brain physiology 
for motor control
The NCM-sensorimotor control circuit is not hierarchical, nor
do the electronic modules bear any functional relationship to
the various motor-brain locations distributed over the sever-
al motor-cortical areas described above. However, the NCM-
sensorimotor control system is an integrated system with a
functional flow that relates a) an input coordinate frame of all
the sensory signals, b) via an intermediate circuit that is func-
tionally similar to the biological functions in the brain, with c)
an output coordinate frame of the set of motor control signals
that control a biological behavioral adaptation. This NCM-cir-
cuit offers the neurobiologist and neurophysiologist a set of
constraints that may guide their research. For example The
NCM-circuit may guide the research into questions such as
a) How does the sensory input of each set of sensors (tac-
tile, visual etc) fit into the hierarchical organization of the
brain? 
b) What portion of the functional flow is implemented by each
level in the motor control hierarchy? And c) How are the input
and output coordinate frames implemented in the brain?

4. A COMPARISON OF THE CONNECTIVITY
OF A BIOLOGICALMODALITYWITH A
“MECHANICAL MODALITY”

A biological modality is defined in terms of a subjective expe-
rience or ”conscious” sensation that is quantitatively related
to the receptor, the transduction process within the receptor,
and the specificity of the  afferent axons and the central con-
nections in the brain activated by the receptors. The
observed modalities of the various sensory receptors is the
only case (known to the author) wherein a large body of psy-
chophysical data2 supports the transformation of “a subjec-
tive experience” or “conscious” sensations (Nagel, 1974)11
into action potentials and bioelectric currents that activate
specific areas of the brain. This is important because it may
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also transform subjective experiences into computer code3
(analogous to action potentials and bioelectric currents). It
implies the existence of a Neural Correlate of Consciousness
(NCC)-circuit (Metzinger, 2000) in the brain that is a biologi-
cal Sensation Generating Mechanism (SgM) (Rosen &
Rosen, 2007 a, b). The following comments are based on the
assumption that a biological NCC-circuit exists in the brain,
and explores the question of whether a mechanical NCC-cir-
cuit may also exist in the NCM-robot. However, there are two
preliminary notes that need to be established:

1) The subjective experience (modality) of the receptor,
now regarded as a transducer, is always associated with the
incident energy (input) to the receptor (transducer). The out-
put of the receptor (via a transduction process) converts the
incident energy into action potentials and bioelectric cur-
rents. The design of the itch-NCM robot is dependent only on
the action potentials and bioelectric currents at the output of
all the biological receptors in the system. The design is total-
ly independent of the subjective experience, which is associ-
ated with the incident energy to the receptor.

2) The design of the itch NCM-circuit generates a reverse
engineered emulation of itch-scratch behavior patterns that
depend only on the activated action potentials and bioelec-
tric currents at the output of all biological receptors of the
system. The reverse engineered behavior pattern is
unchanged regardless of whether the robotic NCM has, or
does not have, a modality-type sensation associated with it.

The somatotopic coordinate frame of the NCM-robot con-
stantly monitors the state of the skin-surface pressure trans-
ducers for itch-type activations. The mechanical itch-type
activation is similar to the biological itch type activation in
that:  a) The mechanical central connections emulate the bio-
logical central connections. They both are represented by
the connectivities of neural-network-based mappings sug-
gestive of a coordinate frame.  b) Robotic location, identifica-
tion and  “self knowledge” are similar to biological self-knowl-
edge of itch type activations. c) The itch-scratch motor con-
trol response of the robotic system is similar to the response
of a biological system.  

The following philosophical questions are posed to
the reader: 

a) In a mechanical NCM-circuit is there a mechanical-type
of subjective experience, analogous to the biological itch-
sensation, correlated with the mechanical “itch-type” activa-
tion of the pressure transducers? 

b) Based on the similarities enumerated above, if the bio-
logical NCM-circuit gives rise to a modality-sensation and if
the connectivity of the biological NCM-circuit is functionally
similar to the mechanical/electronic NCM-circuit;  then may it
be hypothesized that electronic NCM-circuits may also give
rise to a mechanical type modality-sensations? (Rosen &
Rosen, 2007a,b)

NOTES

1.Overlapping papers were presented at IEEE-IJCNN WCCI-
Vancouver and ICONIP-2006 Hong Kong, and published in the pro-
ceedings of the conferences (Rosen & Rosen, 2006a,b). All the data
is based on internal MCon publications and research, much of it
available for viewing on the MCon website www.mcon.org.

2. Psychophysics is often regarded as a sub-discipline of psycholo-
gy dealing with the relationship between physical stimuli and their

subjective correlates. The modern study of sensation began in the
19th century with the pioneering work of E.H. Weber (1846) and G.
Fechner (1860) in sensory psychophysics. Despite the diversity of
sensations we experience, all sensory systems convey four basic
types of information when stimulated, modality, location, intensity
and timing. These four attributes of a stimulus yield sensation. An
early insight into the neuronal basis of sensation came in 1826 when
Johanne Müller advanced his “laws of specific sense energies.” The
specificity of response in receptors underlies the “labeled line code,”
the most important coding mechanism for stimulus modality (Kandel
et al, 2000)3, 11. 

3. In two philosophical papers (Rosen and Rosen, 2007a,b), the
authors utilize the modalities of receptors to convert subjective expe-
riences (members of a S-set), into computer code (the domain of
variable defined by a Universal Turing Machine (UTM)) (members of
the T-set).

4. This is a mechanistic definition of “volition”. The robotic controller
is said to be a volitional controller if the controlled trajectory of
motion is goal directed and pre-planned, with the option available for
re-planning the pre-planned trajectory if an environmental contin-
gency is detected prior to reaching the pre-planned goal. Re-plan-
ning is always a function of the contingency that appears in the
region of the pre-planned path. It is never functionless or random, as
hypothesized by Libet (1985).

5. The approach of modeling the connectivity of the brain rather than
the mind’s symbolic representation of the world was inspired by D.
O. Hebb (1949) and Frank Rosenblatt (1958, 1962 p.386). During
the decades of 1980 and 1990, this approach was pursued by many
research scientists. Some notable examples are the works of
Stephen Grossberg (1988), Gail Carpenter (1991), Teuvo Kohonen
(Kohonen, 2001), William Bechtel (Bechtel, Abrahamson, 2002),
Paul Churchland (Churchland, Sejnowski, 1996) and Helge Ritter
(Ritter et al, 1992). In the past decade the connectionist methodolo-
gy has blossomed with the development of powerful neural net-
based computational techniques that emulate a large variety of brain
functions. For example, the work of Teovo Kohonen (2001) and
Helge Ritter (1992) applied to self Organizing Maps and micro-struc-
tural connectivity in the biological brain, and the work by authors of
the Dept. of Cognitive and Neural Systems at Boston University (see
note 8).

6. One of the motivations for performing symbolic representational
studies, and abandoning the connectionist approach, is the pres-
ence of very large numbers of neurons and possible neural net-
works, in the human brain (numbers in the range of 100 billion). For
example in this paper, only 10,000 connectionist neurons, forming
the neural network portion of the NCM-circuit, are required to gener-
ate the input to the coordinate frame in the controller.
Connectionists may reconcile those low numbers, when claiming
that the neural connections reverse engineer some brain function, by
noting that the brain is a highly redundant organ, where each neu-
ron in a neural network is likely to be represented by thousands of
neurons in the brain. Furthermore, each neural network is likely to be
redundantly located in multiple regions of the brain. Thus, state-
ments by Kalasky and Crammond (1992) that “sensory motor trans-
formations of the CNS are population functions to which a single cell
makes only a fragmentary contribution,” is consistent with a connec-
tionist approach wherein a single electronic neuron may be related
to thousands of neurons in the human brain. Or the similar statement
of Scott et al (1995) “The discharge of many motor cortical cells is
strongly influenced by attributes of movement related to the geome-
try and mechanics of the arm and not only by spatial attributes of the
hand trajectory.” This statement is also consistent, on two counts,
with the reverse engineered coordinate frame presented in this
paper. First the motor control signals of the NCM-circuit involves
many motor neurons (at least 3-per joint), and the movement of all
joints (the hand, for example) is related to the geometry and
mechanics (by inverse kinematics) of the joint (hand), and not only
by the spatial attributes of the hand trajectory.
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7. In discussing proprioceptive sensations, Kandel, Schwartz &
Jessell (1991, p. 337) show that the brain determines precise knee
position (in the absence of voluntary muscle contraction). At rest, the
angle of the knee can be evaluated to within 0.5-degrees. 

8. Stephen Grossberg, Boston University director of Adaptive
Systems and colleagues and staff at the Department of Cognitive
and Neural Systems, are responsible for prolific publications in neu-
ral networks applied to cognition, memory, motor control, speech,
and pattern recognition. Stephen Grossberg is especially known for
his studies of the brain by means of Pattern Recognition by Self
Organizing Neural Networks (1982); Studies of Mind and Brain
(1980); How Does the Brain Build a Cognitive Code (1980); Adaptive
Resonance Theory (ART) models; The Adaptive Self-organization of
Serial Order in Behavior Speech Language and Motor Control
(1985); The Adaptive Brain vol. I & II (1987a,b) and many other sen-
sorimotor control publications (Grossberg, 1988, 1998; Guenther et
al 2001; Pack et al 1988; Cameron et al 1997).

9. Rodney Brooks of the MIT artificial Intelligence Laboratory has
published extensively studies of “how to Build Complete creatures
Rather than Isolated Cognitive Simulators” (Brooks, 1989a,b).
However, having rejected reductionism (connectionism), Brooks and
company, in all their publications, design robotic subsystems made
up of a conglomerate of isolated cognitive simulators (Brooks,
2000a,b, 1985; Lorigo, Brooks & Grimson, 1997). For example, “A
Robot that Walks; Emergent Behaviors from a Carefully Evolved
Network” (Brooks, 1989b); A Robot Layered Control System for a
Mobile Robot (Brooks, 1986); The Role of Learning in Autonomous
Robots” (Brooks, 1991); “The Cog Project: Building a Humanoid
Robot” (Brooks, et al, 2000b): and “Visually-Guided Obstacle
Avoidance in Unstructured Enviorments (Lorigo, Brooks, & Grimson,
1997). Other noteworthy representational studies of isolated cogni-
tive simulators are Kalaska and Crammond (1992) “cerebral Cortical
Mechanisms of Reaching Movements; Scott and Kalaska (1995)
Changes in Motor Cortex activity during reaching Movement with
similar Hand Paths but different arm postures”; And Brooks (1986,
1989b) description of robotic ambulation. Kelso (2002) also presents
a general representational approach that utilize synergistic concepts
of self organization and the mathematical tools of non-linear dynam-
ical systems to demonstrate that basic forms of biological coordina-
tion arise from changes (in state) due to self-organizing synergistic
processes. 

10. The nodal map module of the RRC-robot exhibits some charac-
teristics of human plasticity as observed in human stroke victims
(Schwartz & Begley, 2002). If the damage to the brain of a stroke vic-
tim is analogous to nodal malfunctions in the in the Nodal Map
Module, then the recovery of the RRC-robot may be analogous to
the recovery of the human stroke victim. For example, when the
Sequence Stepper Module (SSM) searches for a pre-planned path
between the initial position and the goal position, if it finds a few mal-
functioning nodes along the path, the SSM would automatically gen-
erate a new pre-planned trajectory that avoided the malfunctioning
nodes.  (The first time this happens, the action of the robot would be
more error prone than after it had been trained to implement this new
trajectory. That is, the robot would be required to re-learn how to
move that limb through the proper trajectory.) 

11. The authors prefer to avoid the term “conscious” or “conscious-
ness” in discussing the modalities of sensors, (Nagel’s (1974) equiv-
alence of subjective experiences with consciousness, notwithstand-
ing). At this time there is no scientific concurrence on a definition of
“consciousness, whereas the modality of a receptor is well defined
in terms of the subjective experience or sensation that is evoked by
the receptor and the central connections associated with it. Thus the
authors defer (in section IV-4) to the philosophers any connection
between modality-sensations and “consciousness.”
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