
An Electromechanical Neural Network 
Robotic Model of the Human Body and Brain. 

Sensory-Motor Control by Reverse Engineering
Biological Somatic Sensors.

Alan Rosen, David B. Rosen

Machine Cosciousness Inc. Redondo Beach, California, USA
arosen@mcon.org dbenrosen@mcon.org

Abstract. This paper presents an electromechanical robotic model of the human
body and brain. The model is designed to reverse engineer some biological func-
tional aspects of the human body and brain. The functional aspects includes
reverse engineering, a) biological perception by means of “sensory monitoring”
of the external world, b) “self awareness” by means of monitoring the location
and identification of all parts of the robotic body, and c) “biological sensory
motor control” by means of feedback monitoring of the internal reaction of the
robotic body to external forces. The model consists of a mechanical robot body
controlled by a neural network based controller.

1 Introduction

This paper presents a functional design of an electromechanical robotic model that is
based on human biological functions. The reverse engineered model is shown in Figure
1. The portrayed robotic system is designed as a humanoid, volitional, multitasking
robotic system that may be programmed to perform any task from mail delivery post-
man to a expert basketball player. However the system is not a high level design that
even comes close to the present day state of the art standards. 
Caveat: Our goal was to reverse engineer a biological adaptation, which requires mere-
ly a building path1 [1] for a humanoid robot. Thus the robotic body is a simplistic
design (19th- 20th century technology) of motors and sensors with one simple torque
generating motor per degree of freedom, operating on a simplified structure that has
not been calculated to carry even the weight of the robot. The robotic controller, known
as a Relational Robotic Controller (RRC)2, is a hybrid circuit made up of neural net-
works and microprocessor based components. The neural network portion is controlled
by simplified, very basic neural network equations (vintage 1980 generated by Teuvo
Kohonen [2] and Helge Ritter [3]). However, the engineering design of the controller
is complete albeit inefficient and cumbersome by present day standards.
The system is unique because the RRC-robot reverse engineers the human brain, the
muscles of the human body, and is designed to perform humanoid actions with its body
and limbs (see Figure 1). 

1 The description of the robotic body adheres to Daniel Dennett’s reverse engineering requirement: “No
functional analysis is complete until it has confirmed that a building path has been specified”[1].
2 The RRC has been designed, reduced to practice and patented (Patent no. US 6,560,512B dated May 6,
2003). A more detailed description of the RRC may be viewed at the MCon site www.mcon.org [4].

 



The controller is a giant parallel processor that controls all the motors and joints of the
robotic body simultaneously with a response time of 1/30-seconds and with synchro-

3 The ‘labeled line’ principle [6], and the “Law of Specific Nerve Energy” [7], ensures that each type of sen-
sor responds specifically to the appropriate form of stimulus that gives rise to a specific sensation. In the bio-
logical system the specificity of each modality is maintained in the central connections of sensory axons, so
that stimulus modality is represented by receptors, afferent  axons, and the central pathways that it activates.
In the biological case, the labeled line principle is often used to explain the unique “conscious sensation” that
each modality generates [6][7]. In this case, low level and high level activation thresholds in the pressure
transducers simulate the modalities of “touch-feeling” and “tactile pain,” respectivly. 

Fig. 1. A reverse engineered building path of a humanoid mechanical robotic body controlled by
a hybrid neural net based Controller (RRC). The mechanoreceptors and nociceptors are reverse
engineered by pressure transducers uniformly distributed on the robotic (skin) surface. The pro-
prioceptors are reverse engineered by angle measuring transducers that are associated with the
angular position of the shaft of each motor. The vestibular sensors are reverse engineered by cir-
cular rings on the controller (head) section of the robot. The nervous system is reverse engi-
neered by thin wires that connect all the sensors, via cable wire bundles, to the controller (see
insert). The modalities of the camera/eyes (not discussed in this paper), have been studied by
Rosen and Rosen [5]. The connectivity of the system is assumed to adhere to the biological
“labeled line” principle3 [6].
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nization and coordination of all body parts. The pressure transducers, uniformly dis-
tributed on the robotic body, simulate the tactile sensory system that constantly moni-
tors the peripheral surface of the body for tactile activations. In the following sections,
we shall show that the RRC-robot shares the following four characteristics of the
human body and brain.

1. Similar to the biological brain, the controller has within it a reflection of the
external coordinate frame in which the robotic motors are operating. The perceived tac-
tile-activation data originating in the pressure transducers in the external frame are
transformed into the coordinate frame located within the RRC-controller.

2. The measure of the internal coordinates is calibrated with the measure of the 3-
dimensional space in which the robot is operating.

3. The “robotic self” and the motion of the mechanical limbs of the robot with
respect to the center of mass of the “robotic self” are fully defined and controlled in the
internal coordinate frame as well as the external coordinate frame.

4. The robot has the capability to be trained to perform a diverse set of actions lim-
ited only by the sophistication of the neural networks in the controller and the design
and the range of motion of all robotic moveable parts. for example a RRC-model may
be programmed (trained) to perform multitasking sequences that range from digging
ditches to playing basketball.

2. Main Results

The main results consist of four sections, sections 2.1 to 2.4, showing that the RRC-
robot shares the four characteristics of the human body and brain enumerated above.

2.1 Similar to the Biological Brain. The Controller has within it a Reflection of the
External Coordinate Frame.

Figure 2A illustrates the transformation of the neuronal folds in the brain into the 3-
dimensional external (mirror) nodal map containing the homunculus of the robot.
Validation of such transformations may be obtained by reference to most textbooks in

Fig. 2. A coordinate frame within the controller. A: Transforming the cortical folds in the brain
into 3-dimernsional nodal mapping. B: A neuronal world-mapping: An indexed coordinate frame
within the brain. The positions of flailing limbs are also shown.
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cognitive neural science [8][10]. The mapping of the folds of the brain into an
homunculus is shown in figure 2A. In the reverse engineered controller, the pressure
transducers located on the robotic surface (skin), are mapped onto electronic receiving
neurons identified by indexed locations determined by the 3-d coordinate location of
the pressure transducer. Those indexed locations form the internal nodal coordinate
frame within the controller. Thus, each electronic neuron, located at each of the
indexed coordinate locations, forms a a portion of a neural network configured by the
indexed locations of all pressure transducers.

2.2 The Measure of the Internal Coordinates is Calibrated with the Measure of
the 3-dimensional Space in which the Robot is Operating.

Figure 2A shows the indexed locations of the electronic neurons (part of the neural net-
work) that define the robotic self. The primary constraint imposed on the design of a
world map-coordinate frame is that the topographic ordering of neural network neu-
rons within the controller form a one to one correspondence with the external world
space that defines the boundaries (skin-surface) of the robot.

2.3 The “Robotic Self” is Fully Defined in the Controller.

Figure 2B shows that the “robotic self” is fully defined in an indexed coordinate frame
within the controller. The “near space” around the robotic self is defined by flailing
limbs. Regions of the near space unoccupied by flailing limbs are defined by dormant
receiving neurons. For example, the positions of the robotic fingers in the near space
is determined by the angle measuring transducers located on the shaft of each motor.
A configured neural network is located within the controller with individual neurons of
the neural network located at indexed locations that form a map of the robotic body
(the configuration of neurons may be like the folds in the brain or like the 3-d
homunculus  shown in the figure). The configured neural network is that part of the
RRC that facilitates reverse engineers the connectivity of the biological brain.

2.4 The Robot has the Capability to Be Trained to Perform a Diverse Set of
Actions.

This section is divided into 5 parts: part 2.4.1-The flow through the configured neural
network ( neurons located at indexed locations) and the RRC, part 2.4.2-The block dia-
gram of the RRC, part 2.4.3-Training a Nodal Map Module with robotic self knowl-
edge, part 2.4.4 The solution to the neural net equations (for the neural network por-
tion of the RRC), associated with a single joint Nodal Map Module, and part 2.4.5-
Training a volitional Multitasking robot.

2.4.1 The Flow through the Configured Neural Network (each neuron located at
an indexed location) and the RRC: In this paper, the RRC-robot is trained to perform
itch-scratch type actions. The indexed location of an end joint, such as a robotic finger,
used for scratching, is called q-initial. The itch-point, possibly an indexed location of
a pressure transducer is labeled q-final. Figure 3 shows the flow of q-signals emanat-
ing from the pressure transducers, and the control pulse signals, p-signals, that are
transmitted from the controller to the motors. The itch scratch trajectory from q-initial
to q-final is shown in Figure 3 as a sequence of control signals, po. p1, p2. 
A dedicated Nodal Map Module is associated with each robotic joint, and the indexed



location of the end-joint, q-initial, is always recorded in the dedicated Nodal Map
Module. 
To satisfy the volitional constraint (motion must be pre-planned and goal directed), the
trajectory of motion of any end-joint is divided into small nodal transitions. The total
trajectory is a sequence of nodal p, q-initials between the first and final, q-final, node
in the trajectory. Only the first of a pre-planned sequence of nodes may be activated
during any frame period. Thus, the maximum speed of operation is one nodal transi-
tion per frame period (with all joints (q-initial nodes) activated simultaneously)

2.4.2 Block Diagram of the RRC (Hybrid Circuit). The RRC is a hybrid circuit
made up of a set microprocessor based modules, programmed by sequential algorith-
mic programming (takes up approximately half the physical space of the controller),
and a set of neural network modules, that take up the remaining physical space within
the controller. A microprocessor based module is dedicated to each joint of the robotic
body (21-joint require 21-modules). The q-initial motion of the end-joint is controlled
in each module, during each frame period.
All the programming of the Nodal Map Modules, Task Selector Modules, Sequence
Stepper Modules, and Control-signal Output Modules, is based on indexed locations in
the 3-d space, determined by the programming/training of the configured neural net-
works shown as the top half of the physical space within the controller (see Figure 4).
A Nodal Map Module associated with each joint, is made up of index locations cover-
ing the range of motion of the end-joint. Twenty one Nodal Map Modules are required

Fig. 3. A flow diagram of the q-vector and p-vector through a configured neural network and
thence to the RRC that simulates the functionality of the human brain. The output of the Nodal
Map Module goes to the external mirror nodal map via the Sequence Stepper and the Control-
signal Output Module.



to control all the joints of the robot shown in Figure 1. Figure 1 shows the 21-joints
and the motors present at each joint (a total of 39 motors with one p-signal per motor).
Thus, given a q-initial position located at an indexed location of a Nodal Map Module,
the Task Selector Module generates a q-final location. The Sequence Stepper Module
is activated by q-final to search the region between q-initial and q-final and generate
an obstacle avoiding p-q sequence that represents the pre-planned trajectory between
q-initial and q-final. The Control-signal Output Module may then (conditionally) trans-
mit all 39-p-signals to all the motors in order to generate the first nodal transition of
the pre-planned sequence of p-signals (that control motion from q-initial to q-final).

2.4.3 Training A Nodal Map Module. Robotic Self Knowledg: A block diagram
explaining the training proicedure is shown in Figure 5. Two paths are shown in the
figures, a training path and an operational path. Training is performed on all twenty one
Nodal Map Modules simultaneously. 
The itch-scratch trajectory is used repeatedly to train the robot with a “self identifica-
tion and location” form of knowledge. This form of knowledge is also called “robotic
self-knowledge”. Robotic self knowledge is implemented by training the robot to iden-
tify and locate any and every body part of the robot by means of the itch-scratch tra-
jectory of motion. The training consists of teaching first the Nodal Map Module asso-
ciated with the end-joint of the robotic finger to scratch all possible itch points that can
be reached by the end-joint. Then training the remaining twenty Nodal Map Modules
to scratch, with the aid of each associated end-joint, all possible itch points.
In the training path of the end-joint Nodal Map Module, the set of p-signals (39-p-sig-
nals one to each motor of the robot) are trained repeatedly until the displacement error
CFI<∂ (see Figure 5). When the CFI<∂, then up to 3-corrected table line entry p-sig-
nals are assigned to the end-joint Nodal Map Module, and the remaining corrected
table line entry p-signals are assigned to all the other end-joint Nodal Map Modules.
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Since the designer may calculate the magnitude of the set of p-values (all the table-line
entries) in all the Nodal Map Modules, required to move a robotic end-joint from q-ini-
tial to q-final, the training process is a refinement and correction of the calculated
indexed-table-line entries, so that the robot generates an exact transition from q-initial
to q-final.
When training one end-joint of the robotic finger Nodal Map Module by the itch
scratch method, all remaining twenty Nodal Map Modules are trained simultaneously
(by inverse kinematic techniques) with the measured and corrected displacement of the
robotic finger. Note that there may be multiple inverse kinematic displacements of the
other Nodal Map Module for any fixed displacement in the end-joint Nodal Map
Module. The end-joint Nodal Map Module is said to be fully trained when each
indexed-node has a correct and complete set of table line entries assigned to it. In a 3-
d space the complete set per node consists of table line entries representing 27-dis-
placements to adjacent nodes. Each displacement may be represented by a 3-compo-
nent vector (p=px + py + pz), and each component represents the input/torque to one
of the three motors that may be present at that joint.   

2.4.4 The Solution to Neural Net Equations Associated with a Single Joint Nodal
Map Module: A complete solution to the equations of motion of an RRC- circuit for
the sensory-motor control of a robotic arm has been developed by Rosen & Rosen [9].
The solutions to the neural net equations applied to a joint-dedicated Nodal Map
Module, and represented by thresholds and the synoptic weights of interconnections
are shown in Table 1. The equations are based on the work of Teuvo Kohonen [2] and
Helge Ritter [3]. The two most important factors in obtaining the solution to the neu-
ral net equations are:
1. For each joint-dedicated Nodal Map Module the required p-signals and required dis-
placements are known quantities that are determined by the physical design of the sys-
tem. All the displacements may also be observed (by inverse kinematics) when the p-
signals act on all the motors of the robot. Thus the training process is a refinement and
correction of the calculated indexed-table-line entries, so that the robot generates an
exact transition from q-initial to q-final.

Fig. 5. Training the Nodal map module: Two paths are shown in the figure, a training path and
an operational path. The set of p-signals are trained repeatedly until the CFI is less than delta.
When CFI ≤ ∂, the p-signal is assigned to a node (indexed location) in a Nodal Map Module as
a table-line entry. A pictorial representation of the training path flow is also shown in Figure 3.
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2.The equations and solution of one joint-dedicated Nodal Map Module of a given
dimensionality is applicable to all the other joint-dedicated Nodal Map Modules of the
same dimensionality (the same number of motors per joint).

2.4.5 Training a Volitional Multitasking Robot: The emphisis of this paper is on
reverse engineering the connectivity of the somatic sensors in the body and brain. Our
goal is not to design a multitasking robot-but to show that the reverse engineered build-
ing path  of the human brain, described in the previous sections, is applicable to the
design of a volitional multi-tasking robot that has the biological locomotive character-
istics of walking, dancing or even playing basketball. The only difference between a
itch-scratch robot and a basketball playing robot is in the training of the Nodal Map
Modules, not in any re-design of any of the electronic or mechanical components. 
The robot is first trained to visually detect obstacles by means of a Nodal Map Module
designed with a q-visual field configured “world map” within the controller, as
described by Rosen & Rosen [5]. The itch-scratch robot may then be trained to visual-
ly detect an obstacle along a pre-planned itch-scratch trajectory and to generate a re-
planned obstacle avoidance trajectory (by means of the Sequence Stepper Module)
whenever an obstacle appears along the pre-planned trajectory.
Training an obstacle avoiding multitasking robot is performed by means of an
Hierarchical Task Diagram (The top level specification for an RRC-robot) shown in
Figure 6. Training the robot to move a limb through a single scratch trajectory, called
a chunk (see figure), is represented by a sequence of p-signals that guide the robotic
limb from q-initial to q-final. A sequence of chunks may be called a daisy chain or a
line dance. Teaching/training a robot to walk is analogous to teaching the robot to per-
form a repetitive sequence of daisy chains. A non-repetitive, but artistic goal directed
sequence of chunks may be called a line dance. A trained basketball playing robot per-
forms a goal directed, obstacle avoiding, sequence of line dances, interspersed with
daisy chains (associated with running and dribbling the basketball).

Table 1. The solution to the neural net equation applies to a single joint/nodal-map-module.



3.0 Similarities to the Biological Brain

The previous sections presented a well defined reverse engineered building path of the
connectivity of the tactile sensors and the topographic characteristics of the human
brain. A byproduct of the reverse engineered connectivity is the design of a locomotive
RRC-robot programmed to perform itch-scratch-“self location and identification” type
actions. Some philosophical issues arise from the functional similiarity of the RRC to
the functions of the human brain.  
1. A philosophical issues associated with the trainability of the RRC-robot:  The robot
has the capability to be trained to perform a diverse set of actions. Does the reverse
engineered RRC shed light on how the brain controls complex locomotive behavior?
What are the implications of neural net based robotic memory and robotic learning on
the biological procedural learning and procedural memory?
2. Is it possible to compare the robotic self and robotic self knowledge with the human
psychological perception of self knowledge? The “robotic self” and the motion of the
mechanical limbs of the robot with respect to the center of mass of the “robotic self”
are fully defined. The measure of the internal coordinates is calibrated with the meas-
ure of the 3-dimensional space in which the robot is operating. But the most important
characteristic of the RRC-robot is “self awareness” of the reaction forces exerted on
the pressure transducer of the robotic body, by the external environment. Thus the
robot, may have “self knowledge” or “self awareness” of the forces exerted on the
pressure transducers of the robotic feet as the robot leaps walks or runs.   
3. Is it possible to compare robotic monitoring with biological perception (such as tac-
tile feeling, psychological “seeing”, or psychological hearing)?
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The internal coordinate frame of the robot constantly monitors the state of the  pres-
sure-transducer/tactile sensors. In connection with biological tactile monitoring, the
modality of the biological tactile receptors are defined in medical and neuroscience
textbooks [10], in terms of the conscious sensation that they evoke. What is the modal-
ity of the robotic pressure transducers that are connected to the controller in the same
manner as the biological receptors (adhering to the law of specific nerve energy)?
4. In Conclusion, we propose that the modality of the robotic pressure transducers is a
“conscious sensation”, similar to the modality of  biological mechanoreceptors and
nociceptors. The RRC-circuit is thus a Conciousness-generating Mechanism (CM). It
may be the reverse engineered analogue of the long sought after Neuronal Correlate of
Consciousness-(NCC)-circuit in the brain [11]. Thus, the biological “conscious sensa-
tions” of “touch-feeling” or nociceptic “pain” may be correlated with a neuronal “self
identification and location”-circuit. The RRC-circuit is also a neuronal correlate of
consciousness circuit within the controller, for subjective experiences analogous to
“touch feeling,” and “tactile pain. ”  
This proposal may be generalized as follows: 
1.For all the biological sensors, the biological "self location and identification circuit"
in the brain, coupled with self knowledge and self awareness, represents the philosoph-
ically, long sought Neuronal Correlate of Consciousness (NCC)-circuit in the brain
(see www.mcon.org)4.
2.The biological NCC-circuit and the RRC-circuit may give rise in addition to a bio-
logical/machine-like form of tactile “consciousness,” other forms of “consciousness”
such as biological/machine-like  visual “consciousness  (the sensation of “seeing”),
“hearing”, “smelling” and “tasting.”

4 All the data and figures for this article are based on patents and publications relating to the Relational
Robotic Controller (RRC)-circuit that have been published in the MCon Inc. website www.mcon.org. The
authors are particularly grateful for the financial support and permission to publish the MCon data and
Figures, received from Machine Consciousness Inc

References

1. D. C. Dennett, Artifact Hermeneutics, or reverse Engineering p. 194 in Evolution edited by Mark Ridley Oxford
University Press: New York 1997.

2. T. Kohonen, Self Organizing Maps (3rd ed.) Berlin: Springer-Verlag, T. (2001.
3. H. Ritter, M. Thomas, & K. Schulten, Neural Computation and Self Organizing Maps. New York: Addison Wesley

Pub. Co., 1992.
4. D. B. Rosen A., & A. Rosen, The Application of the NCC Circuit to Sensory-Motor Control of the Somatic Motor

System. Machine Consciousness Technical Journal. 1, 41-56, 2003 (available for viewing at www.mcon.org)
5. A. Rosen A., & D. B. Rosen, The Design of the  NCC-circuit for Visual Perception. Machine Consciousness Technical

Journal. 1, 19-40, 2003 (available for viewing at www.mcon.org)
6. A. C. Guyton, Textbook of Medical Physiology. Philadelphia: W.B. Saunders 1991. 
7. D. E. Haines, Fundamental Neuroscience 2nd ed. Churchill Livingston: Phil. PA, 2002.
8. D. G. Purves, A. D. Fitzpatrick, L.C. Katz, A. S. La Mantia, & J. O. McNamara, Neuroscience. Sunderland Mass:

Sinauer Assoc. Inc., 1997.
9. D. B. Rosen A., & A. Rosen, The Engineering Design of a NCC Circuit for the Sensory-Motor Control of a Robotic

Arm. Machine Consciousness Technical Journal. 1, 41-56, 2003 (available for viewing at www.mcon.org) 
10. E. R. Kandel, J. H. Schwarts, & T. M. Jessell, Editors, Principles of Neural Science. Norwalk Conn:Appleton and

Lange, 1991. (See also Chapter 26: “Touch”)
11. T. Metzinger (Ed). Neural Correlare of Consciousness. Cambridge Mass:MIT Press, 2000


